Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{N} 1-\mathrm{Cl}$	1.465 (4)	N13-C12P	1.57 (2)
$\mathrm{N} 1-\mathrm{C} 2$	1.369 (3)	$\mathrm{O} 2-\mathrm{C} 2$	1.217 (3)
N1-C8	1.370 (3)	O4-C4	1.243 (3)
N3-C2	1.396 (4)	O16-C15	1.401 (5)
N3-C3	1.467 (3)	O16-C17	1.418 (5)
N3-C4	1.405 (3)	C4-C9	1.384 (4)
N5-C6	1.353 (3)	C8-C9	1.373 (4)
N5-C9	1.401 (3)	C10-C11	1.517 (4)
N5-C10	1.464 (3)	C11-011	1.390 (3)
N6-C6	1.326 (3)	C11-C12	1.473 (4)
N7-C6	1.353 (3)	$\mathrm{Cl1}-\mathrm{OllP}$	1.289 (16)
N7-C8	1.350 (3)	$\mathrm{C} 11-\mathrm{C} 12 \mathrm{P}$	1.44 (2)
N13-C14	1.449 (4)	C14-C15	1.491 (5)
N13-C18	1.441 (4)	C17-C18	1.521 (5)
N13-C12	1.467 (4)		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	118.0 (2)	N5-C6-N7	112.4 (2)
$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 8$	121.5 (2)	N6-C6-N7	124.2 (2)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 8$	120.3 (2)	N1-C8-N7	126.2 (2)
C2-N3-C3	115.3 (2)	N1-C8-C9	120.9 (2)
C2-N3-C4	125.9 (2)	N7-C8-C9	112.9 (2)
C3-N3-C4	118.7 (2)	N5-C9-C4	132.3 (2)
C6-N5-C9	106.6 (2)	N5-C9-C8	104.3 (2)
C6-N5-C10	125.4 (2)	C4-C9-C8	123.4 (2)
C9-N5-C10	127.9 (2)	N5-C10-C11	111.7 (2)
C6-N7-C8	103.8 (2)	$\mathrm{C10-C11-O11}$	106.8 (2)
C14-N13-C18	109.3 (3)	$\mathrm{Cl0}-\mathrm{Cl1-C12}$	113.2 (3)
$\mathrm{C} 14-\mathrm{Ni3}-\mathrm{Cl} 2$	107.4 (3)	C10-C11-O11P	112.4 (7)
C14-N13-C12P	127.4 (8)	C10-C11-C12P	119.8 (9)
$\mathrm{C} 18-\mathrm{N} 13-\mathrm{C} 12$	115.5 (3)	$\mathrm{O} 11-\mathrm{Cl1-C12}$	114.8 (3)
C18-N13-C12P	84.9 (9)	C12-C11-O11P	132.3 (8)
C15-O16-C17	110.2 (3)	$\mathrm{O} 11 \mathrm{P}-\mathrm{Cl1}-\mathrm{Cl2P}$	108.7 (12)
N1-C2-N3	116.7 (2)	N13-C14-C15	111.2 (3)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{O} 2$	122.2 (3)	O16-C15-C14	112.0 (3)
N3-C2-02	121.1 (3)	O16-C17-C18	110.4 (3)
N3-C4-O4	120.5 (2)	N13-C18-C17	110.5 (3)
N3--C4-C9	112.8 (2)	N13-C12-C11	113.3 (3)
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 9$	126.7 (3)	$\mathrm{N} 13-\mathrm{C} 12 \mathrm{P}-\mathrm{C} 11$	109.9 (14)
N5-C6-N6	123.4 (2)		

Table 3. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N6-H61 $\cdots \mathrm{O} 11^{\mathrm{i}}$	$0.74(4)$	$2.26(3)$	$2.953(3)$	$156(4)$
$\mathrm{N} 6-\mathrm{H} 62 \cdots \mathrm{~N} 7^{\mathrm{ii}}$	$0.99(3)$	$1.94(3)$	$2.933(3)$	$176(3)$
Oll-HO11 $\cdots \mathrm{O}^{\mathrm{iii}}$	$0.92(4)$	$1.86(4)$	$2.737(4)$	$160(3)$
Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x,-y, 1-z$; (iii)				
$x, 1-y, \frac{1}{2}+z$.				

The systematic absences showed the space group to be $C 2 / c$ or $C c$. The normalized structure-factor statistics favoured the centrosymmetric space group $C 2 / c$ and subsequent analysis confirmed this. The structure was solved by direct methods using SHELXS86 (Sheldrick, 1985) and refined by full-matrix least squares with SHELX76 (Sheldrick, 1976). All H atoms, except those of the amino and hydroxy groups, which were located from a $\Delta \rho$ map, were placed in calculated positions and refined using a riding model with isotropic displacement parameters taken as 1.5 times those of the respective parent C atoms. During the course of the refinement, two peaks were found adjacent to the $-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}$ - moiety with intensities of 1.19 and 0.58 e \AA^{-3}. Based on their locations, one was assigned to atom O11P and the other to atom C12P. Occupancy factors were allowed to vary in the subsequent cycles of refinement and were fixed at 0.85 for atoms Oll and C12, and at 0.15 for atoms O11P and C12P in the final cycles of refinement. Atoms O11P and C12P were refined with isotropic temperature factors. The molecular plot was prepared with SHELXTL-Plus XP (Sheldrick, 1989). The geometrical calculations and material for publication were produced using PARST (Nardelli, 1983) and CSU88 (Vickovič, 1988)

The crystallographic studies were supported by grant No. 303029101 from the Polish State Committee for Scientific Research.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: AS1159). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH 12 HU , England.

References

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Gorczyca, M., Pawłowski, M., Mrozikiewicz, A., Kozlowska, T. \& Wasik, A. (1986). Pol. J. Pharmacol. Pharm. 38, 85-90.
Karczmarzyk, Z., Karolak-Wojciechowska, J. \& Pawłowski, M. (1991). Acta Cryst. C47, 1902-1904.

Karolak-Wojciechowska, J. \& Pawlowski, M. (1990). J. Crystallogr. Spectrosc. Res. 20, 477-482.
Kozlowska, T., Olejnik, A., Krawczak, J., Chodera, A., Barry, D. \& Pedersen, E. (1989). Pol. J. Pharmacol. Pharm. 41, 611-618.
Łucka-Sobstel, B., Pawłowski, M., Gorczyca, M., Olejnik, A., Kozłowska, T. \& Chodera, A. (1985). Mem. Pharm. 166, 35-42.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Olejnik, A., Kozłowska, T., Beutler, A., Krawczak, J., Chodera, A., Pawłowski, M. \& Gorczyca, M. (1989). Mem. Pharm. 170, 77-85.
Pawlowski, M., Gorczyca, M., Bobkiewicz-Kozłowska, T., Chodera, A. \& Mrozikiewicz, A. (1991). Polish Patent applications P-291 306 and P-291 307.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Sheldrick, G. M. (1989). SHELXTL-Plus. Release 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sutor, D. J. (1958). Acia Cryst. 11, 83-87.
Vickovič, J. (1988). CSU88. Crystal Structure Utility. Program for Geometrical Calculations. Univ. of Zagreb, Croatia.

Acta Cryst. (1995). C51, 2123-2125

3,3-Dibenzylpentane-2,4-dione, $\mathrm{C}_{19} \mathrm{H}_{\mathbf{2 0}} \mathrm{O}_{\mathbf{2}}$

Nenad Judaš, Branko Kaitner* and Ernest Meštrović

Chemistry Department, Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, Ul. kralja Zvonimira 8, 41000 Zagreb, Croatia
(Received 4 January 1995; accepted 3 April 1995)

Abstract

The notable feature of the title compound is the non-planarity of the pentane-2,4-dione moiety. This fragment of the molecule adopts a significantly distorted S conformation with a dihedral angle of $62.1(2)^{\circ}$ between the planes through $\mathrm{C} 1-\mathrm{C} 2(=\mathrm{O} 1)-\mathrm{C} 3$ and $\mathrm{C} 3-\mathrm{C} 4(=\mathrm{O} 2)-\mathrm{C} 5$. The molecular packing involves $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ close contacts.

Comment

Different types of bidentate β-diketone ligands are involved in numerous chelate complexes of transition metals. They can be coordinated to the metal atom either as anions or neutral ligands. The number of complexes containing a neutral β-diketone is negligible compared with those having a coordinated monoanionic β-diketone ligand (Kawaguchi, 1986). The title compound, (I), was prepared for potential use as a bidentate intrinsically neutral ligand for coordination to transition metals.

(I)

The essential moiety of the molecule is a distorted chain built up of alternating $\mathrm{C}_{s p^{3}}$ and $\mathrm{C}_{s p^{2}}$ atoms. The stereochemistry of the molecule is determined by the two benzyl substituents on C 3 . In the solid state the molecule possesses a distorted S conformation (Emsley, 1984). The deviation from the ideal S conformation in which $\mathrm{C} 1-\mathrm{C} 5, \mathrm{O} 1$ and O 2 are in a single plane, is determined by the dihedral angle of $62.1(2)^{\circ}$ between the plane defined by $\mathrm{O} 1, \mathrm{C} 1, \mathrm{C} 2$ and C 3 , and that through $\mathrm{O} 2, \mathrm{C} 3, \mathrm{C} 4$ and C 5 . The bond angles about C 3 [106.9 (3)-112.3 (3) ${ }^{\circ}$] show significant deviations from the standard tetrahedral value. Even larger discrepancies are observed in the $\mathrm{C} 3-\mathrm{C} 6-\mathrm{C} 8$ and C3-C7-C14 bond angles [$117.8(3)$ and $114.8(3)^{\circ}$, respectively], probably as a result of steric effects caused by the relatively bulky phenyl rings, $\mathrm{C} 8-\mathrm{C} 13$ and $\mathrm{C} 14-\mathrm{C} 19$, in such a small molecule. The values of the bond distances of all types are in good agreement with reported values (Allen et al., 1987). The shortest intermolecular interaction, $3.48 \AA$, may be considered as a weak CH. . O close contact (Steiner \& Saenger, 1993).

Fig. 1. A perspective ORTEPII (Johnson, 1976) view of the molecule in a general position showing the numbering scheme. The ellipsoids are at the 30% probability level.

Experimental

The title compound was synthesized by a modification of the procedure described earlier (Morgan \& Taylor, 1925), the modification applying to the isolation of the disubstituted product. By the improved process the yield of the main product was more than ten times higher. The compound was prepared by the reaction of benzyl chloride and the sodium salt of 2,4 pentanedione in dry benzyl chloride in a $1: 3$ molar ratio. The mixture was stirred for 7.5 h at 460 K (yield 50%). Crystals suitable for X-ray analysis were obtained from the reaction. The density D_{m} was measured by flotation.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}$
$M_{r}=280.36$
Monoclinic
Ia
$a=10.817$ (5) \AA
$b=12.620$ (4) \AA
$c=11.502(4) \AA$
$\beta=91.44(2)^{\circ}$
$V=1570(1) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 18
reflections
$\theta=6.00-11.50^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block
$0.53 \times 0.43 \times 0.36 \mathrm{~mm}$
Colourless
$D_{x}=1.186 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.186 \mathrm{Mg} \mathrm{m}^{-3}$
$\begin{array}{cl}\text { Phillips PW1100 diffractom- } & R_{\text {int }}=0.009 \\ \text { eter } & \theta_{\text {max }}=26.97^{\circ}\end{array}$
ω scans
Absorption correction:
$h=-13 \rightarrow 13$
none
3601 measured reflections
2953 independent reflections
1489 observed reflections $[I>2 \sigma(I)]$

Refinement

Refinement on F
$(\Delta / \sigma)_{\text {max }}=0.001$
$R=0.032$
$w R=0.043$
$S=1.06$
1489 reflections
188 parameters
H -atom parameters not refined
$w=1 /\left[\sigma^{2}(F)+0.0010 F^{2}\right]$
$\Delta \rho_{\text {max }}=0.10 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.12 \mathrm{e}^{\AA^{-3}}$
Extinction correction: none
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$$
U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j} .
$$

	x	y	z	$U_{\text {eq }}$
O1	0.27200	$0.979(2)$	0.02640	$0.072(2)$
O2	$0.2376(3)$	$0.7554(2)$	$-0.1639(3)$	$0.070(1)$
C1	$0.0812(4)$	$1.0102(4)$	$0.1138(4)$	$0.089(3)$
C2	$0.1670(3)$	$0.9519(3)$	$0.0379(3)$	$0.052(2)$
C3	$0.1177(3)$	$0.8567(2)$	$-0.0302(3)$	$0.045(2)$
C4	$0.2267(3)$	$0.7854(2)$	$-0.0640(4)$	$0.054(2)$
C5	$0.3157(4)$	$0.749(3)$	$0.0299(4)$	$0.072(2)$
C6	$0.0449(3)$	$0.8998(2)$	$-0.1379(3)$	$0.048(2)$
C7	$0.0295(3)$	$0.7873(3)$	$0.049(3)$	$0.059(2)$
C8	$0.0953(3)$	$0.9955(2)$	$-0.1979(3)$	$0.046(2)$

C9	$0.0322(4)$	$1.0907(3)$	$-0.1953(4)$	$0.064(2)$
C10	$0.0727(4)$	$1.1791(3)$	$-0.2537(4)$	$0.078(3)$
C11	$0.1802(5)$	$1.1743(3)$	$-0.3142(4)$	$0.074(2)$
C12	$0.2452(4)$	$1.0812(3)$	$-0.3172(4)$	$0.063(2)$
C13	$0.2042(3)$	$0.9936(3)$	$-0.2598(3)$	$0.054(2)$
C14	$-0.0239(3)$	$0.6922(3)$	$-0.0183(3)$	$0.053(2)$
C15	$0.0331(4)$	$0.5939(3)$	$-0.0136(4)$	$0.073(2)$
C16	$-0.0175(5)$	$0.5066(3)$	$-0.0690(5)$	$0.083(3)$
C17	$-0.1258(5)$	$0.5153(4)$	$-0.1303(4)$	$0.088(3)$
C18	$-0.1843(4)$	$0.6119(4)$	$-0.1361(4)$	$0.082(3)$
C19	$-0.1340(3)$	$0.6981(3)$	$-0.0806(4)$	$0.067(2)$

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 2$	$1.200(3)$	$\mathrm{C} 3-\mathrm{C} 7$	$1.565(5)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.218(6)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.497(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.484(6)$	$\mathrm{C} 6-\mathrm{C} 8$	$1.501(5)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.523(5)$	$\mathrm{C} 7-\mathrm{C} 14$	$1.505(5)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.540(5)$	$\mathrm{C} a-\mathrm{Car}$	$1.375(6)$
$\mathrm{C} 3-\mathrm{C} 6$	$1.550(5)$		
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$121.8(3)$	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$	$120.8(3)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.6(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.4(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$118.5(3)$	$\mathrm{C} 3-\mathrm{C} 6-\mathrm{C} 8$	$117.8(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$109.3(3)$	$\mathrm{C} 3-\mathrm{C} 7-\mathrm{C} 14$	$114.8(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6$	$107.4(3)$	$\mathrm{C} 6-\mathrm{C} 8-\mathrm{C} 9$	$120.3(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 7$	$111.8(3)$	$\mathrm{C} 6-\mathrm{C} 8-\mathrm{C} 13$	$122.9(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 6$	$112.3(3)$	$\mathrm{C} 7-\mathrm{C} 14-\mathrm{C} 15$	$122.0(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 7$	$106.9(3)$	$\mathrm{C} 7-\mathrm{C} 14-\mathrm{C} 19$	$12 \mathrm{i} .4(3)$
$\mathrm{C} 6-\mathrm{C} 3-\mathrm{C} 7$	$109.1(3)$	$\mathrm{Car}-\mathrm{Car}-\mathrm{Car}$	$120.0(4)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	$120.8(3)$		

The original cell had the space-group symmetry $C c$ with $a=$ 15.590 (5), $b=12.620$ (4), $c=11.502$ (4) $\AA, \beta=132.48(2)^{\circ}$. This cell was reduced by the matrix $(001,010, \overline{1} 0 \overline{1})$ to the reported $I a$ cell because of the large value of $\beta(=90+$ 42.48°).

H atoms were refined riding on the parent C atoms at a distance of $0.95 \AA$. The rotational orientation of the methyl C 1 and C 5 H atoms was determined by the contour ΔF map calculated through the plane defined by the methyl H atoms. The direction of the chiral axis was determined unequivocally by refinement of the chirality value η (Rogers, 1981).

Data collection: DIF4 (Stoe \& Cie, 1992a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe \& Cie, 1992b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); NRCVAX SOLVER (Gabe, Le Page, Charland, Lee \& White, 1989). Program(s) used to refine structure: NRCVAX LSTSQ. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: $N R C V A X ~ T A B L E S$.

The authors thank the Ministry of Science and Technology, Republic of Croatia, for financial support.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: KAll16). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH 12 HU , England.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Emsley, J. (1984). Struct. Bonding (Berlin), 57, 147-192.
Gabe, E. J., Le Page, Y., Charland, J. P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-389.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kawaguchi, S. (1986). Coord. Chem. Rev. 70, 51-84.

Morgan, G. T. \& Taylor, C. J. A. (1925). J. Chem. Soc. 127, 797-806. Rogers, D. (1981). Acta Cryst. A37, 734-741.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Steiner, T. \& Saenger, W. (1993). J. Am. Chem. Soc. 115, 4540-4547.
Stoe \& Cie (1992a). DIF4. Diffractometer Control Program. Version 7.0. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (1992b). REDU4. Data Reduction Program. Version 7.0. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1995). C51, 2125-2127

'Stiff' cis-Stilbenes. (Z)-6,6'-Dimethyl1, 1^{\prime} 'biindanylidene and (Z)-4, $4^{\prime}, 7,7^{\prime}$-Tetra-methyl-1,1'-biindanylidene

Jun Harada, Keichiro Ogawa* and Shuf Tomoda

Department of Chemistry, The College of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153, Japan
(Received 6 March 1995; accepted 20 April 1995)

Abstract

The X-ray crystal structures of (Z) $6,6,6^{\prime}$-dimethyl-1, 1^{\prime} biindanylidene, $\mathrm{C}_{20} \mathrm{H}_{20}$ (1), and (Z) $-4,4^{\prime}, 7,7^{\prime}$-tetramethyl-$1,1^{\prime}$-biindanylidene, $\mathrm{C}_{22} \mathrm{H}_{24}$ (2), were determined at 90 K . The structure around the ethylene bond in (2) is distorted by steric congestion due to the methyl groups at C 7 and $\mathrm{C} 7^{\prime}$.

Comment

In the course of our studies on the unusually short ethylene bond of (E)-stilbenes and the large amplitude torsional motion in their crystals (Ogawa et al., 1988; Ogawa, Sano, Yoshimura, Takeuchi \& Toriumi, 1992), we have recently reported the structures of 'stiff' stilbenes, i.e. (E)-1,1'-biindanylidenes, and discussed the length of the central ethylene bond (Ogawa, Harada \& Tomoda, 1995). We report here the crystal structures of the cis isomers of two of these stiff stilbenes, namely, (Z)-6,6'-dimethyl-1, 1^{\prime}-biindanylidene, (1), and (Z) $-4,4^{\prime}, 7,7^{\prime}$-tetramethyl-1, 1^{\prime}-biindanylidene, (2).

(1)

(2)

Each of the molecules has a crystallographic twofold axis through the center of the ethylene bond. The π systems are non-planar. The dihedral angle between the

